skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Newville, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manganese (Mn) oxides, widely found in aquatic and terrestrial environments, play crucial roles in natural ecosystems and in environmental processes. Previously, it was believed that naturally abundant Mn oxides originated through biotically mediated processes. However, we have revealed the significance of photochemically induced abiotic oxidation of Mn2+(aq) to Mn(IV) oxides. This study further elucidates the photochemically induced co-oxidation of aqueous Mn2+ and cobalt (Co2+), which leads to the predominant formation of Mn(IV)–Co(III) oxide nanosheets. Both pair distribution function analysis and X-ray absorption spectra provide evidence that Co2+ is mainly oxidized to Co(III) within the plane of the Mn oxide structure, where it forms double-edge-sharing arrangements. Additionally, the initial concentration of Co2+ greatly influences the extent of Co incorporation within the final Mn–Co oxides and Mn oxidation states. Increased Co incorporation correlates with a higher concentration of oxygen vacancies within the Mn oxide structures, which reduces their band gap and significantly influences the reactivity of Mn oxides, governing their ability to participate in pollutant degradation and redox transformations. This study advances our understanding of the mechanism of formation of Co-incorporated Mn oxides in the natural environment and provides insights into their occurrence in the natural environment and their applications in environmental processes. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  2. This study evaluates changes in copper (Cu) speciation that occur in sulfate-dominated basaltic and andesitic magmas equilibrated at oxygen fugacities (fO2’s) above the nickel-nickel oxide (NNO) buffer. Cu K-edge microfocused X-ray absorption fine structure spectroscopy (XAFS) data are presented from both natural and synthetic silicate glasses. Natural samples analyzed include olivine-hosted melt inclusions from tephra of mafic cinder cones in the Lassen segment of the Cascade arc (USA) and from the Michoacan-Guanajuato volcanic field (Mexico) as representative samples from melts equilibrated at fO2 > NNO. A comparison with melts equilibrated at fO2 < NNO is provided by analysis of olivine-hosted melt inclusions from Kīlauea Volcano. Data are also presented from copper- and sulfur-bearing synthetic hydrous andesitic glasses synthesized over a range of fO2, from roughly NNO-2 to NNO+2. The Cu spectroscopy data from the natural and synthetic glasses show two dominant Cu species, Cu1+ oxides (referred to here as Cu-O) and Cu1+ sulfides (referred to here broadly as Cu-S, but not precluding Cu-Fe-S species). The relative proportion of each species present correlates with the relative concentration of dissolved sulfide in the melt. Synthetic sulfur-bearing glasses equilibrated at NNO-1.2 were found to contain exclusively Cu-S species. Sulfur-bearing experimental glasses equilibrated at NNO-0.5 give calculated Cu-O/(Cu-O + Cu-S), defined here as the “Cu-O fraction”, of < 0.10, whereas sulfur-bearing glasses synthesized at NNO+0.6 and NNO+1.8 give calculated Cu-O fraction > 0.96. Natural melt inclusions from Lassen and Kīlauea show a bimodal distribution in Cu-O fraction, with overlapping ranges, of 0.14-0.77 for Lassen and 0.18- 0.78 for Kīlauea. Michoacan-Guanajuato inclusions yield Cu-O fractions of 0.68-0.91. The difference in the calculated proportions of Cu-O to Cu-S species appear correlated with available sulfide in the melt. As relative S2- concentrations decrease, the dissolved Cu species in the melt evolves from dominantly Cu-S to Cu-O. This includes melts equilibrated at fO2’s where S6+ is the dominant S species. At intermediate sulfide abundances both species appear to coexist. Thermodynamic modeling of the Cu speciation in these silicate melts suggests that speciation of Cu as a CuFeS2 melt species (akin to chalcopyrite or intermediate solid solution) most accurately predicts the measured Cu species. The modeling suggests that aFeO in the silicate melt, fO2 and melt S2- (expressed as fS2) are the most important parameters controlling the proportions of Cu-O vs. Cu-S species. Our results provide a new perspective for understanding Cu solubility, transport, and partitioning in magmatic systems. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract Partition coefficients for rare earth elements (REEs) between apatite and basaltic melt were determined as a function of oxygen fugacity (fO2; iron-wüstite to hematite-magnetite buffers) at 1 bar and between 1110 and 1175 °C. Apatite-melt partitioning data for REE3+ (La, Sm, Gd, Lu) show near constant values at all experimental conditions, while bulk Eu becomes more incompatible (with an increasing negative anomaly) with decreasing fO2. Experiments define three apatite calibrations that can theoretically be used as redox sensors. The first, a XANES calibration that directly measures Eu valence in apatite, requires saturation at similar temperature-composition conditions to experiments and is defined by: ( E u 3 + ∑ E u ) Apatite  = 1 1 + 10 - 0.10 ± 0.01 × l o g ⁡ ( f o 2 ) - 1.63 ± 0.16 . The second technique involves analysis of Sm, Eu, and Gd in both apatite and coexisting basaltic melt (glass), and is defined by: ( Eu E u * ) D Sm × Gd = 1 1 + 10 - 0.15 ± 0.03 × l o g ⁡ ( f o 2 ) - 2.46 ± 0.41 . The third technique is based on the lattice strain model and also requires analysis of REE in both apatite and basalt. This calibration is defined by ( Eu E u * ) D lattice strain = 1 1 + 10 - 0.20 ± 0.03 × l o g ⁡ ( f o 2 ) - 3.03 ± 0.42 . The Eu valence-state partitioning techniques based on (Sm×Gd) and lattice strain are virtually indistinguishable, such that either methodology is valid. Application of any of these calibrations is best carried out in systems where both apatite and coexisting glass are present and in direct contact with one another. In holocrystalline rocks, whole rock analyses can be used as a guide to melt composition, but considerations and corrections must be made to either the lattice strain or Sm×Gd techniques to ensure that the effect of plagioclase crystallization either prior to or during apatite growth can be removed. Similarly, if the melt source has an inherited either a positive or negative Eu anomaly, appropriate corrections must also be made to lattice strain or Sm×Gd techniques that are based on whole rock analyses. This being the case, if apatite is primary and saturates from the parent melt early during the crystallization sequence, these corrections may be minimal. The partition coefficients for the REE between apatite and melt range from a maximum DEu3+ = 1.67 ± 0.25 (as determined by lattice strain) to DLu3+ = 0.69 ± 0.10. The REE partition coefficient pattern, as observed in the Onuma diagram, is in a fortuitous situation where the most compatible REE (Eu3+) is also the polyvalent element used to monitor fO2. These experiments provide a quantitative means of assessing Eu anomalies in apatite and how they be used to constrain the oxygen fugacity of silicate melts. 
    more » « less
  4. Abstract Anisotropic absorption in crystals is routinely observed in many spectroscopic methods and is recognized in visible light optics as pleochroism in crystalline materials. As with other spectrosco-pies, anisotropy in Fe K-edge X-ray absorption spectroscopy (XAS) can serve both as an indicator of the general structural arrangement and as a conundrum in quantifying the proportions of absorbers in crystals. In materials containing multiple absorbers, observed anisotropies can typically be represented by a linear relationship between measured spectroscopic peak intensities and relative absorber concentrations. In this study, oriented XAS analysis of pyroxenes demonstrates that the macroscopic theory that describes visible light absorption anisotropy of triaxially anisotropic materials can also be applied to X-ray absorption in pyroxenes, as long as the orientation and magnitude of the characteristic absorption vectors are known for each energy. Oriented single-crystal XAS analysis of pyroxenes also shows that the measured magnitude of characteristic absorption axes at a given orientation is energy-dependent and cannot be reproduced by linear combination of intermediate spectra. Although the macroscopic model describes a majority of the anisotropy, there is distinct discordance between the observed and interpolated spectra in the pre-edge between 7109 and 7115 eV, which is marked by spikes in RMSE/mean intensity ratio. Absorption indicatrices for samples analyzed in the visible and at X-ray wavelengths are modeled with a three-dimensional (3D) pedal surface, which functions as an empirical way of interpolating between the observed absorption data. This surface only requires a maximum of three coefficients, and results from the summation of 3D lemniscates. An absorption indicatrix model can be used to characterize anisotropic absorption in crystals and provides a way of comparing XAS spectra from randomly oriented crystals, such as those from polished sections, to a database of characterized crystals. 
    more » « less